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LETTER TO THE EDITOR 

Defects in flux lattices and flux creep in high-Tc 
superconductors 

S-T Chui and Hong-ru Ma 
B a m l  Research Institute, Univcnity of Delaware. Newark. DE 19716, USA 

h i v e d  3 February 1992 

Abslim~ We have estimated the energy of a dislocation loop and found that it  exhibits 
a strong temperature dependence and atrapolatcs to zem slightly above a temperature 
which we have previously identified as the melting temperature of the pure lattice. The 
magnitude of this c n e t 3  and iu dependence an the rempelature. the magnetic field and 
the Landau-Ginzburg parameter a11 agree reasonably wII with experimental estimates 
Cor the activation energy in Uiermally assistcd flux flow at low currents. Estimates of the 
prefactor of the resistivity due lo hopping of the flux loop also agree with aperimental 
results. Our m u l l  is the first quantilative estimate of the activation energy. 

For a strong enough magnetic field, flux lines penetrate type-I1 superconductors and 
form a lattice. Anderson and Kim [I] first pointed out that flux creep can occur 
through collective motion of flux lines. They suggested that in the limit of low current 
j ,  the resistivity p is thermally activated. Recently Feigelman el ai [2] furthered 
understanding of this approach by applying to this problem knowledge gained in the 
study of random fields 13, 41 and the pinning of charge density waves 151. 

These studies assume that the ground state possesses a finite shear modulus, with 
positional long-range order destroyed by impurities [6, 7. A differcnt approximation 
describing the ground state as a vortex glass was proposed by Fisher [%lo]. The 
dynamics in the possible glass phase were studied by n n e r  [ll]. The descriptions 
of the ground state as a glass or a solid with no long-range order are not mutually 
exclusive. The appropriateness depends on the correlation length of the system. 

These work have not considered the effect of defects in the flux lattices. Recently 
Ma and Chui (121 considered a mechanism of flux lattice melting due to spontaneous 
generation of dislocations. They found that when a single dislocation is created, 
the vibration free energy of the flux lines decreases by an amount of the order of 
l o g ( A / a ) ,  where A is the area of the lattice. This decrease cancels the elastic 
strain energy at some temperature. Thus, creation of a free dislocation becomes 
favourable and the flux-line lattice will be unstable. They identified this temperature 
as the melting temperature of the pure lattice and found that the Crce energy of edge 
dislocations becomes zero at temperatures that are within 20% Of the experimental 
melting temperatures. Defects such as dislocation loops can be thermally activated 
and affect flux creep, just like a ‘flux bundle’ [13-15]. Our melting mechanism suggests 
that the activation energy will be strongly temperature dependent. 

Estimates of the activation energy, U, in flux creep can be extracted by in- 
tegrating with respect to temperature the experimental quantity 116, 171 f ( T )  = 
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d1npldT-I = p d ( U / T ) / d T .  U ( T , H )  exhibits a rich dependence on the tem- 
perature and the magnetic field. At a fixed magnetic field, as the temperature is 
increased it exfrapolares lo zero at a temperature below the superconducting temper- 
ature. As the magnetic field is increased, the activation energy is decreased. There 
have not been any previous theories that explain this rich behaviour. Nor were there 
any quantitative estimates of the activation energy. 

In this letter we estimate the energy of dislocation loops in flux lattices and find 
that it exhibits a strong temperature dependence and extrapolates to zero slightly 
above a temperature which we previously identified as the melting temperature of 
the pure lattice. Our results, together with the experimental estimates, are shown 
in figures 1 and 2 for BSCCO and YBCO. The magnitude of this energy and its 
dependence on the temperature, magnetic field and the Landau-Ginzburg parameter 
all agree reasonably well with estimates for the activation energy in flux creep. The 
experimental curves for U as a function of T exhibit positive curvatures. One of the 
reasons for the positive curyature comes from the interaction between the dislocation 
loops, which start interacting with each other when their number becomes large. This 
interaction will increase the energy to create more defects and thus produces a pos- 
itive curvature. Because there are uncertainties in the exact experimental values of 
the parameters that we use, the appearance of agreement with experiment could be 
enhanced if we had adjusted these parameters accordingly. The discrepency between 
theory and experiment increases as the magnetic field is decreased and the temper- 
ature approaches the superconducting transition temperature. This is reasonable for 
several reasons. (i) No impurity effects have been included. This effect is especially 
important when the flux lattice becomes 'soft'. (ii) We have assumed that the coher- 
ence length approaches infinity as (1 - T/Tc)- ' / z .  The actual dependence can be 
different from this close to T, [18]. (iii) The way we extract the gap from the &- 
perimental quantity, f ,  may be invalid because f exhibits a compiicated temperature 
dependence in this limit. We now describe our results in detail. 

SSCCO 
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Figure L Dieoretical eslimates or llie aclivalion energy (solid lines) and experimental 
values (dashed l i n a j  of U for BSCCO as a function of temperature at diKeerenl magnelic 
Geld strengths. 
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YBCO 
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Figure 2 Theoretical erlimales o l  the activation energy (solid lines) and aperimental 
valuer (dashed liner) of U Cor YBCO as a function of temperature at different magnelic 
field slrrnglhs. 

The interaction energy, W ,  of flux lines of arbitrary shape was derived recently 
by Brandt [20] from the London equations in terms of the penetration depths along 
the ab plane and the z direction, A,, and A,, as: 

where 

and 

where q = h x E ,  AI = A:,, A, = A t  - A:,. The harmonic energy of vibration, WO, 
a n  be written in terms of the deviations, s, of the flux lines from the lattice positions 
as 

where 
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and (CY, p ,  . . .) E (~,y), and ( i , j ,  ...) E (I, g, 2). The sum runs over all reciprocal 
lattice vectors Q. 

The free energy of the defect is the sum of the core energy, Ec, the free energy 
of vibration of the core position Fvc, the elastic strain energy Ed, and the free energy 
change of the lattice vibrations when the dislocation loop is created FdWvib. We 
discuss each of these terms below. 

(i) E,. We view a dislocation loop as a dislocation pair of finite length. Hill 
et a1 [21] has considered atomistic models of dislocations in flux lattices but only in 
the limit of small G-L parameter, K, without periodic boundary conditions. Fisher et 
a1 [22] have calculated the core energies of defects in the two-dimensional Coulomb 
lattice. We follow their procedure to calculate the core energy of the dislocation 
of the flux lattice here. Since the penetration depth is much larger than the lattice 
constant, the potential is long range and we have used the Ewald sum technique for 
its evaluation 1241. A periodic boundary condition is used. We follow Adam and 
MacDonald [2S] and choose the Ewald parameter so that the real-space sum is short- 
ranged and cylindrical, thus its value can be easily tabulated as a one-dimensional 
array. The sum over the reciprocal lattice vectors can be factorized into a product 
of terms involving only a single summation and is thus highly efficient. We start off 
with an initial configuration determined by the analytic formula for the displacement 
by dislocations. The system is then relaxed until a minimum energy configuration is 
reached. Instead of using a simplex method as Fisher er a1 did Cor the relaxation, we 
use a quasi-Newton method. The process is speeded up with an analytic formula for 
the derivative of the potential. Wc investigated dislocation pairs at different distances 
and, after correcting for the energy changes due to image interactions, we found that 
the final results differ from each other by less than 10%. Calculations were done for 
BSCCO and YBCO wirh the temperature ranging from 0.1 to 0.8 (in units of T,) and 
magnetic fields from 1 to 10 T We found the final result can be well approximated 
by the formula 2yC,(k = O)a*L/n ,  where y is Euler's constant, L is the length of 
the loop, and C,, is the shear modulus and is equal to (BB,/4n)( 1/8n'). 

The free energy of vibration of the dislocation lines, F,, is com- 
puted from the vibration frequency, w, of a dislocation pair positioned at d{Pi as 
F, = kBTCk.In[l - e x p ( - h w k . / k T ) ] .  The frequency w can be obtained from 
diagonalizing the dynamical matrix 

(ii) F,. 

D,, = C~,a(")"~.(-12)"pb("2[1 - c O s ( k , . . d g ) ) ] / M .  
k 

M is the mass per unit length of the dislocation and can be extracted from that of 
the flux lines, which has been estimated by Suhl [26]. F,, depends on this mass only 
in a logarithmic fashion. " ( q )  is the Fourier transform of the strain tesnsors due 
to a dislocation [27]. For BSCCO F,, is of the order of 40 K and is insignificant 
compared with the other terms discussed here (which is of the order of 700 K). For 
YBCO, the temperature range of interest is close to the superconducting transition 
temperature T, and w approaches zero, in which case F, needs to be included. 

(iu) Ed. For an edge dislocation pair a distance R apart, the elastic dislocation 
energy is equal to C,(k = 0)(1 t u)a2Llog(R/a) /4~ ,  where R is the separation 
between the dislocations and L is its length, and u is Poisson's ratio and is approxi- 
mately 1. We are interested in the smallest activation energy. Thus R should be the 
smallest value so that elastic description of it  remains valid. Numerical calculations 
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[22, U] suggest that R / a  = 3. There is some uncertainty as to the exact experimen- 
tal value of n. We shall follow [33] and use the value of 90 for BSCCO and 50 for 
YBCO. 

(iv) Fdis-vib. The calculation by Ma and Chui for the change in the free energy of 
flux lattice vibrations due to a single dislocation can be generalized to a dislocation 
pair. Because the potential in (2) is slowly valying in space, higher-order anhar- 
monk corrections are small [28, 291; we consider the lowest-order coupling between 
the dislocation and the vibrations of the flux lines as 

where 
The free-energy change of the system, Fw,,-dis, is ln((exp(-Wl/kT))), where 

the angular brackets denotes an average with respect to WO; Le. (f) = 
Er., exp(-Wo/kT)f.  This can in principle be calculated exactly. However, the 
only term that is of the order of the log of the area mmes from the second-order 
cumulant term, FGbWdis = -[(W:) - (W,)2] /2kT + . . .; (W1) = 0 because the sys- 
tem is in equilibrium. The Fourier transform of the strain tensor of a dislocation. 
pair is related to that of a single dislocation by U’ = u(exp(iqR) - 1). Our p r e  
vious calculation for a single dislocation can be generalized trivially m the present 
case. Previously Fvib-*& = -kBTA W log( L/u)/4?r, for some coefficient A W .  Now 
FGb-dir = k,TA W log( R / a ) / 2 x .  

Finally, we turn our attention to the effective length of the dislocation pairs. 
We can describe the configuration of a dislocation by specifying the two-dimensional 
position of its core as a function of the distance z ,  d ( z ) .  For dislocation pairs whose 
core positions are described by d,,,,, the energy is given by 

are derivatives of the interline potential V .  

W’= x b , b j  /d2qdk,dz ,dzz  (s iqj /qz -6ij)C&/w,(q,ki) 
i j  

x [ C O S ( I ? . ( d i ( z i ) - d z ( z z ) ) + k , ( z i - r z ) ) - l I .  

Here wQ is the shear mode eigenvalue of the dynamical matrix a. wg % C,q2 + 
C,(q, k,)k;. Subdo and Brandt [ZO] have recently considered the elastic constant 
C, at a transverse momentum q = 0. For a transverse vector q > l / A 2 ,  the 
magnitude of C,  is much reduced because \Lo in (3) is much smaller. In that 
case, C, % l / A 2 q z .  TJ obtain an estimate, we approximate C, by C,(q ,k , )  = 
R 2 / ~ ’ A , .  U can be written as for an isotropic elastic medium if one makes the 
change of variables C,kL2 = k:C, and 2: = Z~(C,/C,)~.~. For an isotropic 
dislocation loop, one expects the height to be comparable to the separation. In the 
present case, the effective length is changed to (C,/C6,)0.s. This quantity (in units 
of the flux lattice constant) is of the order of 1 for BSCCO and 5 for YBCO. These 
are the lengths used in figures 1 and 2 The magnitude of 5 for YBCO is consistent 
with recent experimental results of the ‘irreversibility temperature’ as a function of 
film thickness [30]. At a field strength of 7 T the transition temperature exhibits a 
strong dependence on film thickness until the thickness reaches 1000 Le. of the 
order of five lattice spacings (200 A). 

The activation energy U is obtained from the experimental quantity f in the 
following way. Assuming that most of the temperature dependence occurs in the 
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exponent, f is equal to Tzd(Lr /T) /dT.  We integrate this quantity numerically and 
obtain U ( T )  = T J z  f/p + U(To). For YBCO we take To = T, and U(T,)  = 0. 
For BSCCO, f exhibits a peak close to T, and it is not clear if our assumption 
is valid. There exists a region at low temperature where U seems quite flat [17]. 
We take that as our starting point in the integration for U. These uncertainties in 
the way of extracting U will affect the overall magnitude of U, but they will not 
change the temperature where the activation energy extrapolates to zero, the slope 
of the temperature dependence, the change as a function of the magnetic field or the 
dependence on the materials parameters. 

'PJ summarize, in this letter we have calculated the magnitude, the temperature 
and the field dependence of the free energy of dislocation loops. These results exhibit 
a rich structure and are in reasonable agreement with the experimental estimates of 
the activation energy from transport measurements. Other p i n t  defects may also 
participate in the transport. We have focused here on dislocation loops because 
of the connection with possible melting mechanisms. The presence of defects may 
have other consequences. Marchetti and Nelson [31] have considered the effect of 
dislocation loops on the bond orientational order, 

So hr ,  we  have focused on the exponent of the resistivity. It is also possible to 
estimate the prefactor in the restivity due to the movement of dislocation loops [l]. 
In the presence of an external current of density J there is a Lorentz force acting 
on the flux lines. Dislocation loops can move from one flux lattice site to another 
so that the average hopping distance is the lattice constant a. Associated with this 
hop there is a net length-movement of all the flux lines that is of the order of az 
for a dislocation loop of dimension a. Since each line carries a magnetic field of the 
order of BaZ,  the energy change due  to a hop of the loop is thus U, = J x Ba4. 
The loop can hop either along or against the direction of the Lorentz force, so 
the net hopping rate is thus uea = u,exp(-U/kT)sinh(U,/kT), where uo is the 
attempt frequency. In contrast to the conventional flux bundle argument, U, is not 
a strong function of the amount of impurities. When the impurity density is high 
there will be some dislocation loops that will be situated close to the impurities 
and U,, its barrier height against hopping, will be changed. Estimates of U, have 
been deduced from the experimental regime in current densities over which linear 
dependencies on the potential are found [16]. Our result is consistent with this 
estimate of (iL 4 J x Ba'. The attempt frequcncy can also be estimated from the 
formula \ /normal mode force  cons t an t /mass .  Normal mode force constants 
have been much discussed recently [ZQ, 32, 331. We find [34] that the attempt 
frequency is equal to 2 x lo'%-' at B = 1 T which is in good agreement with the 
experimental estimate of 101*s-' [16]. Thus the prefactor of the resistivity, which is 
equal to U L B v o / J k T ,  also agrees with the experimental estimate. 

A similar picture of melting and finite-temperature transport in two-dimensional 
quantum systems was recently considered by Chui and Esfarjani [35, 361, who found 
that the change in zero-point energy of the phonon field when a dislocation is created 
cancels the elastic strain energy close to the melting temperature. They considered 
dislocation pairs as charge carriers in a pinned CDW in 2D heterostructures and found 
the activation energy for transport approaches zero close U) the melting point; in 
reasonable agreement with experimental estimates of the activation energy [37]. The 
possible connection between flux lattices and two-dimensional quantum systems has 
been suggested by Nelson and Seung [38], even though this mapping is not accurate 
quantitatively [19, 331. 

~ .~ 
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We thank R Markiewicz for bringing our attention to the existing experimental data 
on the activation energy. 
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